Increased FAT/CD36 Cycling and Lipid Accumulation in Myotubes Derived from Obese Type 2 Diabetic Patients
نویسندگان
چکیده
BACKGROUND Permanent fatty acid translocase (FAT/)CD36 relocation has previously been shown to be related to abnormal lipid accumulation in the skeletal muscle of type 2 diabetic patients, however mechanisms responsible for the regulation of FAT/CD36 expression and localization are not well characterized in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS Primary muscle cells derived from obese type 2 diabetic patients (OBT2D) and from healthy subjects (Control) were used to examine the regulation of FAT/CD36. We showed that compared to Control myotubes, FAT/CD36 was continuously cycling between intracellular compartments and the cell surface in OBT2D myotubes, independently of lipid raft association, leading to increased cell surface FAT/CD36 localization and lipid accumulation. Moreover, we showed that FAT/CD36 cycling and lipid accumulation were specific to myotubes and were not observed in reserve cells. However, in Control myotubes, the induction of FAT/CD36 membrane translocation by the activation of (AMP)-activated protein kinase (AMPK) pathway did not increase lipid accumulation. This result can be explained by the fact that pharmacological activation of AMPK leads to increased mitochondrial beta-oxidation in Control cells. CONCLUSION/SIGNIFICANCE Lipid accumulation in myotubes derived from obese type 2 diabetic patients arises from abnormal FAT/CD36 cycling while lipid accumulation in Control cells results from an equilibrium between lipid uptake and oxidation. As such, inhibiting FAT/CD36 cycling in the skeletal muscle of obese type 2 diabetic patients should be sufficient to diminish lipid accumulation.
منابع مشابه
Abnormal metabolism flexibility in response to high palmitate concentrations in myotubes derived from obese type 2 diabetic patients.
Insulin resistance in type 2 diabetes (T2D) is associated with intramuscular lipid (IMCL) accumulation. To determine whether impaired lipid oxidation is involved in IMCL accumulation, we measured expression of genes involved in mitochondrial oxidative metabolism or biogenesis, mitochondrial content and palmitate beta-oxidation before and after palmitate overload (600μM for 16h), in myotubes der...
متن کاملCD36 in myocytes channels fatty acids to a lipase-accessible triglyceride pool that is related to cell lipid and insulin responsiveness.
High levels of intramyocellular triglycerides are linked to insulin resistance and reflect conditions in which fatty acid uptake exceeds the myocyte oxidative capacity. CD36 facilitates fatty acid uptake by myocytes, and its level is increased in diabetic muscle. We examined whether high CD36 levels would increase lipid content and susceptibility of myocytes to fatty acid-induced insulin resist...
متن کاملMyotubes from Severely Obese Type 2 Diabetic Subjects Accumulate Less Lipids and Show Higher Lipolytic Rate than Myotubes from Severely Obese Non-Diabetic Subjects
About 80% of patients with type 2 diabetes are classified as overweight. However, only about 1/3 of severely obese subjects have type 2 diabetes. This indicates that several severely obese individuals may possess certain characteristics that protect them against type 2 diabetes. We therefore hypothesized that this apparent paradox could be related to fundamental differences in skeletal muscle l...
متن کاملDiabetic and dyslipidaemic morbidly obese exhibit more liver alterations compared with healthy morbidly obese
BACKGROUND & AIMS To study the origin of fat excess in the livers of morbidly obese (MO) individuals, we analysed lipids and lipases in both plasma and liver and genes involved in lipid transport, or related with, in that organ. METHODS Thirty-two MO patients were grouped according to the absence (healthy: DM - DL -) or presence of comorbidities (dyslipidemic: DM - DL +; or dyslipidemic with ...
متن کاملFA1 Induces Pro-Inflammatory and Anti-Adipogenic Pathways/Markers in Human Myotubes Established from Lean, Obese, and Type 2 Diabetic Subjects but Not Insulin Resistance
AIMS Delta like 1/fetal antigen 1 (Dlk1/FA1) is a protein secreted by hormone producing cells in adult human and mice that is known to inhibit adipogenesis. Recent studies demonstrated the role of Dlk1/FA1 in inducing insulin resistance in mice. To investigate the involvement of circulating Dlk1/FA1 in insulin resistance and type 2 diabetes in human subjects, we studied the effects of chronic F...
متن کامل